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Eddy fluxes and topography in stratified
quasi-geostrophic models
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(Received 5 May 1997 and in revised form 16 August 1998)

Turbulent stratified flow over topography is studied using layered quasi-geostrophic
models. Mean flows develop under random forcing, with lower-layer mean stream-
function positively correlated with topography. When friction is sufficiently small,
upper-layer mean flow is weaker than, but otherwise resembles, lower-layer mean
flow. When lower-layer friction is larger, upper-layer mean flow reverses and can ex-
ceed lower-layer mean flow in strength. The mean interface between layers is domed
over topographic elevations. Eddy fluxes of potential vorticity and layer thickness act
in the sense of driving the flow toward higher entropy. Such behaviour contradicts
usual eddy parameterizations, to which modifications are suggested.

1. Introduction
Ocean models, particularly the coarse-resolution models used in climate studies,

often do not explicitly resolve eddies. The performance of such models rests largely
upon how well eddy transports are parameterized. The simplest approach of repre-
senting eddy fluxes by downgradient Fickian diffusion of temperature, salinity and
momentum is demonstrably inadequate, and more realistic parameterizations are
needed. Various alternatives have been proposed, sometimes premised upon Fickian
or nearly-Fickian diffusion of potential vorticity or layer thickness.

The present paper seeks to examine effects of eddies, including flux–gradient rela-
tionships and mean-flow generation, in relatively simple stratified quasi-geostrophic
models, with particular attention to the influence of topography. We consider two
topographies, a ridge and a seamount, as well as different stratifications, locales of
forcing, and dissipation formulae.

The quasi-geostrophic model is defined in § 2. Results, including mean flows, inter-
face deformations and eddy fluxes, are described in § 3 and § 4. In § 5, we show the
results to be qualitatively in accord with the notion that eddies drive the flow toward
higher entropy. We discuss in § 6 how eddy parameterizations might be modified to
better account for the joint influence of eddies, topography and stratification. Results
are discussed in § 7 and summarized in § 8.

2. Model formulation
The equations describing two-layer quasi-geostrophic flow on an f-plane, with

surface forcing F and dissipation D, are

∂qi

∂t
+ J(ψi, qi) =Fδi1 − Di, i = 1, 2, (2.1)
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where potential vorticity qi and streamfunction ψi are related by

q1 = ∇2ψ1 + F1(ψ2 − ψ1), (2.2)

q2 = ∇2ψ2 + F2(ψ1 − ψ2) + h, (2.3)

with Fi = f2
0/g

′Hi. Here, f0 is Coriolis parameter, Hi is mean thickness of layer i, g′
is reduced gravity of the layer interface, h = f0(H0 − H)/H2 where H is total depth
and H0 mean total depth, δij is the Kroneker delta, ∇2 is the horizontal Laplacian,
and J(A,B) = |∂(A,B)/∂(x, y)| is the Jacobian determinant with respect to horizontal
coordinates (x, y).

Horizontal boundary conditions are periodic, and numerical solutions are obtained
by Fourier spectral collocation, with dealiasing by the 2/3 rule (e.g. Canuto et al. 1988).
Temporal integration is via a leapfrog scheme, with a trapezoidal step occasionally
inserted to maintain numerical stability. The dissipation terms are represented by
exponential integration factors.

The computational domain is 1024 km on a side, with grid spacing 8 km, corre-
sponding to truncation wavenumber (after dealiasing) of 42 times the fundamental
wavenumber k0. Mean total depth H0 is 4500 m, and the interface between layers has
mean depth 900 m.

Forcing, random in time and space, is governed by a Markov process

∂Fk

∂t
= −1

τ
Fk + Gk(t), (2.4)

where k is wavenumber, Gk(t) is a white noise process, and τ is a forcing timescale.
The Gk(t) are selected from bi-Gaussian distributions having variances scaled by a
one-dimensional power spectrum ∝ exp[−(k − 3k0)

2/k2
0] over k < 5k0, where k =

|k|.
Recognizing that dissipation in the oceans is poorly understood, we consider various

dissipation laws Di. In all cases, D2 = ν0∇2ψ2 +ν4∇6ψ2, where ν0 and ν4 are coefficients
of Rayleigh and biharmonic friction (e.g. Holland 1978). In the upper layer, we choose
from

D1 = ν4∇6ψ1 (dissipation law I), (2.5a)

D1 = ν0∇2ψ1 + ν4∇6ψ1 (dissipation law II), (2.5b)

D1 = ν0q1 + ν4∇4q1 (dissipation law III). (2.5c)

We consider a sequence of model runs whose properties are summarized in tables
1–4. Runs R1–R4 and related ancillary runs have bumpy ridge topography and runs
S1–S4 bumpy seamount topography, as described below. Deformation radius LD is
20 km, a value representative of mid-latitude oceans (Emery, Lee & Magaard 1984),
except in R1 and S1, for which LD = 5 km. Runs R2–R4 and S2–S4 comprise
sequences having increasing Rayleigh friction. All runs adopt upper-layer dissipation
law I, except R2II (law II), and R2III (law III). In § 3.4 we consider additional runs
in which forcing is barotropic, and in § 3.5 a run in which the ridge is smooth rather
than bumpy.

Each run is integrated for approximately 80 years, as compared to a circulation
timescale (domain width divided by typical velocity 10 cm s−1) of order 100 days.
Temporal means, determined by averaging over the final 50 years, will be indicated
by overbars.
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Parameter Value

Domain size L 1024 km
Grid L/N 8 km
Cutoff wavenumber k1/k0 42
Biharmonic friction ν4 3.5× 1016 cm4 s−1

Mean ocean depth H0 4500 m
Mean interface depth H1 900 m
Coriolis parameter f 10−4 s−1

Forcing amplitude (r.m.s.) F 0.7× 10−12 s−2

Forcing timescale τ 22 days

Table 1. Parameters common to all model runs
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Figure 1. Ridge topography used in § 3. Solid contours denote regions above mean depth, and
dashed contours regions below mean depth. Contour interval is 60 m.

3. Ridge results
We consider first a sinusoidal ridge with random topographic irregularities

described by a power spectrum ∝ (k+ 4k0)
−2.5. Depths range from 4186 m to 4818 m,

and the root-mean-square amplitude of roughness is 64 m (figure 1). Here the y-
averaged component of forcing was set to zero to ensure mean flows paralleling the
ridge are forced only by eddies, rather than by F. Properties of these solutions are
described in tables 2 and 3.

3.1. Mean flows and interface deformations

Runs R1–R4, R2II and R2III all exhibit strong bottom-layer mean flows, correlated
with topography in the sense of anticyclonic circulation over bumps. In runs R1,
R2, R2II and R2III, having smallest Rayleigh friction coefficient ν0 = 0.5× 10−7 s−1,
upper-layer mean flow is similar to, though weaker than, lower-layer mean flow (figure
2). Upper-layer mean flow among these four runs is least attenuated in run R1 having
LD = 5 km, as is evident from the mean steady flow speeds 〈u1〉 and 〈u2〉 listed
in table 2. These tendencies for topographically-correlated mean flow, increasingly
attenuated upward for larger LD , are much like those exhibited by models in which
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Figure 2. (a) Upper- and (b) lower-layer mean streamfunctions ψi for ridge run R2 having
ν0 = 0.5 × 10−7 s−1. Contour interval is 107 cm2 s−1. Solid contours are positive, and dashed
contours negative.

Quantity R1 R2 R3 R4 R2II R2III

LD (km) 5 20 20 20 20 20
ν0 (s−1) 0.5× 10−7 0.5× 10−7 1.6× 10−7 5× 10−7 0.5× 10−7 0.5× 10−7

Dissipation law I I I I II III
〈u1〉 (cm s−1) a 3.7 6.6 8.1 8.4 5.4 4.4
〈u2〉 (cm s−1) a 3.6 4.4 2.7 1.5 3.8 3.4
〈u1〉 (cm s−1) b 2.5 2.1 1.9 1.5 1.8 2.5
〈u2〉 (cm s−1) b 2.7 3.6 1.5 0.44 3.1 2.9
(Cψh)1 0.819 0.522 −0.330 −0.422 0.461 0.078
(Cψh)2 0.844 0.885 0.638 0.208 0.882 0.889
∆max − ∆min (m) 281 183 242 157 162 150
ν0/A 0.6 0.5 3.8 8.0 0.5 1.1
µ1

c 52 22 16 17 25 9.7
µ2

c 6.2 4.9 3.2 4.8 6.6 14

a〈u〉i =

{
1

L2

∫ L

0

dx

∫ L

0

dy ui·ui
}1/2

, ui = (∂yψi,−∂xψi).

b〈u〉i =

{
1

L2

∫ L

0

dx

∫ L

0

dy ui · ui
}1/2

, ui = (∂yψi,−∂xψi).
c For corresponding inviscid runs, units of k2

0 .

Table 2. Properties of ridge runs R1–R4, R2II and R2III with upper-layer forcing

forcing and dissipation are absent (Salmon, Holloway & Hendershott 1976; Merryfield
1998).

This picture changes radically when Rayleigh friction ν0 becomes larger: runs
R3 and R4, for which ν0 = 1.6 × 10−7 s−1 and ν0 = 5 × 10−7 s−1, exhibit reversed
upper-layer mean flows, as is evident from the negative streamfunction-topography
correlation coefficients Cψh,1 in table 2. These mean flows are stronger than in the
lower layer, as is seen by comparing the spatially-averaged mean-flow speeds 〈ui〉 in
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Figure 3. (a) Upper- and (b) lower-layer mean streamfunctions ψi for ridge run R3 having
ν0 = 1.6 × 10−7 s−1. Contour interval is 5 × 106 cm2 s−1. Solid contours are positive, and dashed
contours negative.

the two layers (table 2). In the lower layer, increasing ν0 damps the mean flow but
does not alter its sense. Figure 3 shows the mean streamfunctions ψi for run R3.

The mean interface between layers is deformed by an amount

∆ =
F

f0

(ψ2 − ψ1)H0, (3.1)

where F ≡ f2
0/g

′H0. The interface is domed over the ridge in all cases. Total defor-
mation ∆max − ∆min is greatest (281 m) in run R1 having LD = 5 km. Mean interface
deformations for runs R1 and R2 are shown in figure 4.

3.2. Eddy fluxes of potential vorticity

Temporal-mean eddy fluxes of qi perpendicular to the ridge axis and directed away
from the crest are computed from 〈uiqi · x̂〉, where the angle brackets denote averages
over y, and x̂ is a unit vector pointing away from the crest. Figure 5 shows 〈q〉1 and
〈q〉2, together with the corresponding eddy fluxes, for runs R2, R2II, and R2III. In
the model runs having dissipation law I, eddy fluxes are downgradient in the lower
layer, and nearly vanishing in the upper layer. In run R2II having dissipation law II,
eddy fluxes are downgradient in both layers. In run R2III having dissipation law III,
eddy fluxes are downgradient in the lower layer, but countergradient in the upper
layer.

3.3. Eddy fluxes of layer thickness

We have also computed fluxes of layer thickness anomaly Θi, where Θi is referenced
to thickness in the absence of motion. From (2.2)–(2.3),

Θi = −Hi

f0

(qi − ∇2ψi − hδi2), (3.2)
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Figure 4. Mean interface deformations ∆ for ridge runs (a) R1 and (b) R2. Contour interval is
11 m. Solid contours denote upward displacement, and dashed contours downward displacement.

or Θ1 = (f0/g
′)(ψ1−ψ2) = −Θ2. By removing the topographic component, we ensure

that column-integrated thickness anomaly vanishes (by virtue of the rigid top and
bottom), and enable layer thickness to be identified with inverse density gradient.

In contrast to qi, eddy fluxes of Θi cannot be computed from averages of uiΘi. This
can be demonstrated from (2.1) and (3.2). For clarity we momentarily ignore forcing
and dissipation, obtaining

∂Θi

∂t
= −Hi

f0

(
∂qi

∂t
− ∂∇2ψi

∂t

)
= −Hi

f0

[
−J(ψi, qi) + J(ψi,∇2ψi)− D∇2ψi

Dt

]
= −Hi

[
1

f0

J(ψi,Θi) + ∇ · ua,i
]
, (3.3)

where D/Dt ≡ ∂/∂t + J(ψi, ·), and ua,i is the isallobaric ageostrophic velocity (e.g.
Gill 1982, p. 498). Changes to Θi thus occur through advection by the geostrophic
velocity, and through dilation arising from convergence of the ageostrophic velocity.
Because the latter is excluded from the geostrophic velocity u, averages of uiΘi will
not correctly represent eddy fluxes of Θi.

To obtain an expression for eddy fluxes of Θi, we first express Θi in terms of qi.
From the Fourier transforms of (3.2) and (2.2)–(2.3),

Θ1,k =
H1

f0

F1

k2 + F1 + F2

(q2 − h− q1)k. (3.4)

Thus, from the Fourier transform of (2.1),

∂Θ1,k

∂t
=
H1

f0

F1

k2 + F1 + F2

{−J(ψ2, q2) + J(ψ1, q1)− D2 + D1 −F}k
≡ −{∇ · [Φadv + Φdis + Φfor]}k , (3.5)
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Figure 5. Temporal-mean potential vorticities qi and eddy fluxes directed away from the ridge
crest, vs. distance x from the ridge crest, for runs R2 (a, b), R2II (c, d), and R2III (e, f) having
dissipation laws I, II and III. Quantities represent averages over y, on both sides of the ridge crest.
Solid curves denote lower layer; dashed curves denote upper layer. In panels (a), (c) and (e), the
averaged ridge profile h is indicated for reference by the thick curve.

where Φadv, Φdis and Φfor denote layer thickness fluxes attributable to advection,
dissipation and forcing. The advective contribution corresponds to the eddy flux
discussed above.

We evaluate eddy fluxes of Θi from temporal means of ∇ · Φadv using Green’s
theorem. Mean fluxes away from the ridge axis, averaged in y, are given by

〈Φadv〉x =
1

2L

∫
A

∇ · Φadv dA, (3.6)

where A denotes area within a distance x of the ridge axis. The dissipation and forcing
contributions are evaluated similarly.

Figure 6 shows 〈Θ1〉 for run R2, along with the mean eddy and dissipative fluxes
〈Φadv〉x and 〈Φdis〉x. (Because the y average of forcing is set to zero, the forcing
contribution 〈Φfor〉x vanishes.) The eddy fluxes are countergradient and balance the
downgradient dissipative fluxes, so that net flux vanishes in statistical equilibrium.
Because Θ2 = −Θ1, eddy fluxes are countergradient in the lower layer as well. The
other runs behave similarly.
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Figure 6. Temporally-averaged (a) layer thickness anomaly Θ1, and (b) eddy fluxes of Θ1 directed
away from ridge crest, vs. distance x from the ridge crest, for run R2. Quantities represent averages
over y, on both sides of the ridge crest. In (b), the solid curve indicates the eddy flux Φadv, and the
dot-dashed curve the dissipative contribution Φdis. (The forcing contribution Φfor vanishes in this
case.)

Quantity R2bf R3bf R4bf R5bf R6bf R2nr

LD(km) 20 20 20 20 20 20
ν0 (s−1) 0.5× 10−7 1.6× 10−7 5× 10−7 1.6× 10−6 5× 10−6 0.5× 10−7

Dissipation law I I I I I I
〈u1〉 (cm s−1) 20.6 14.3 10.0 8.3 11.3 6.4
〈u2〉 (cm s−1) 21.6 14.8 9.1 4.4 1.7 3.1
〈u1〉 (cm s−1) 16.5 6.8 1.9 0.90 1.5 2.0
〈u2〉 (cm s−1) 17.3 7.7 2.6 0.71 0.16 1.7
(Cψh)1 0.811 0.596 0.150 −0.151 −0.082 −0.642
(Cψh)2 0.818 0.630 0.287 0.058 0.002 0.780
∆max − ∆min (m) 88 85 81 72 116 298
ν0/A 0.5 1.0 2.4 12 153 6.7
µ1 0.34 1.5 2.0 6.2 8.5 67
µ2 1.2 2.0 3.3 5.4 3.7 0.5

Table 3. Properties of barotropically-forced ridge runs R2bf–R6bf, run R2nr with no topographic
roughness

3.4. Barotropically forced runs

To test whether the results described above are dependent upon the depth range of
forcing, runs R2–R4 were repeated with forcing F applied identically in both layers,
instead of in the upper layer alone (runs R2bf–R4bf; see table 3). In these runs, mean
streamfunction is positively correlated with topography in both layers. However, when
friction coefficient ν0 is increased further in runs R5bf and R6bf, offsetting the higher
overall level of forcing, upper-layer mean flow reverses.

3.5. Run with no topographic roughness

Run R2nr is identical to run R2, except that we consider a smooth sinusoidal
ridge having the same topographic variance as the bumpy ridge considered above.
Minimum and maximum depths for the no-roughness topography are 4341 m and
4659 m. In this instance, lower-layer mean streamfunction again exhibits positive
correlation with topography (table 3). However, upper-layer mean flow is reversed
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Figure 7. Seamount topography used in § 4. Solid contours denote regions above mean depth,
and dashed contours regions below mean depth. Contour interval is 60 m.

Quantity S1 S2 S3 S4

LD (km) 5 20 20 20
ν0 (s−1) 0.5× 10−7 0.5× 10−7 1.6× 10−7 5× 10−7

Dissipation law I I I I
〈u1〉 (cm s−1) 5.5 11.6 11.7 9.5
〈u2〉 (cm s−1) 5.3 6.0 3.6 1.9
〈u1〉 (cm s−1) 2.6 2.2 1.7 1.0
〈u2〉 (cm s−1) 2.7 2.8 1.1 0.38
Cψh,1 0.337 0.168 −0.151 −0.101
Cψh,2 0.350 0.347 0.151 0.045
∆max − ∆min (m) 116 125 221 136
ν0/A 0.5 1.8 3.4 22

Table 4. Properties of seamount runs S2–S4 with upper-layer forcing

(streamfunction anticorrelated with topography) despite relatively small Rayleigh
friction ν0 = 0.5× 10−7 s−1.

4. Seamount results
To assess further the generality of the results in § 3, particularly the tendency for

upper-layer mean flow to reverse sign for sufficiently large ν0, we consider runs S1–S4.
These are identical to runs R1–R4, except that topography is a Gaussian seamount,
with superposed roughness like that described in § 3 (figure 7). The seamount summit
is 3338 m, and the maximum depth is 4611 m. The Gaussian half-width is 77 km.
Properties of these solutions are described in table 4.

4.1. Mean flows and interface deformations

For run S2 with ν0 = 0.5 × 10−7 s−1, mean streamfunction is similar to that of R2,
i.e. anticyclonic over bumps and somewhat weaker in the upper layer (figure 8). For
greater ν0 (runs S3–S4), the solutions exhibit the same qualitative changes as R3–R4,
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Figure 8. (a) Upper- and (b) lower-layer mean streamfunctions ψi for seamount run S2 having
ν0 = 0.5×10−7 s−1. Contour interval is 107 cm2 s−1. Solid contours are positive, and dashed contours
negative.
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Figure 9. (a) Upper- and (b) lower-layer mean streamfunctions ψi for seamount run S3 having
ν0 = 1.6 × 10−7 s−1. Contour interval is 5 × 106 cm2 s−1. Solid contours are positive, and dashed
contours negative.

i.e. reversed upper-layer mean flows which are stronger than those in the lower layer
(figure 9). The interface between layers is domed over the seamount.

4.2. Eddy fluxes of potential vorticity and layer thickness

Potential vorticity and thickness fluxes for runs S1–S4 were evaluated as azimuthal
averages of radial flux about the seamount summit, using procedures analogous to
those described in § 3.2–§ 3.3. The fluxes are qualitatively similar to those of R1–R4,
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with one exception: because azimuthal and temporal means of F do not identically
vanish, the thickness flux contributions exhibit a three-way balance between eddy flux
〈Φadv〉r , dissipative flux 〈Φdis〉r , and the forcing contribution 〈Φfor〉r .

5. Interpretation
In the model runs described above, forcing and dissipation balance the influence of

eddies in statistical equilibrium. In this section, we develop a simple description for
how this balance determines mean circulation and eddy fluxes.

5.1. Mean flows

In interpreting the above results, we consider forcing and dissipation as perturbing
the flows from inviscid equilibria. Such equilibria possess maximum flow entropy
(Carnevale, Frisch & Salmon 1981), and feature topographically-correlated mean
streamfunctions, which can be found by statistical mechanics (Salmon et al. 1976).
Forcing and dissipation draw such systems toward lower entropy (Zou & Holloway
1994; Merryfield & Holloway 1997). Eddies act oppositely, driving the flow toward
higher entropy (Carnevale 1982; Zou & Holloway 1994).

In applying this principle to the results of § 3–§ 4, we suppose that the Jacobian
terms in (2.1) draw the mean potential vorticities toward their maximum-entropy
values q∗i . We attempt to treat these tendencies as simply as possible by replacing
the mean Jacobian with −A(qi − q∗i ), where A is a scale-dependent eddy relaxation
timescale. Some motivation is provided by results of Merryfield & Holloway (1997),
who investigated how inviscid equilibria of single-layer quasi-geostrophic models
are perturbed by weak forcing. There it was argued that the tendency for eddies to
maximize entropy gives rise to a restoring ‘force’ which grows linearly with (sufficiently
small) departures from equilibrium. This tendency was demonstrated numerically by
applying small torques to individual Fourier modes of vorticity, while keeping the
system close to equilibrium with appropriately-chosen broadband dissipation. The
resulting perturbations were proportional to the applied torques, with the largest
effect on the Fourier mode being forced. Substituting −A(qi − q∗i ) for the Jacobian
terms in (2.1), Fourier transforming, ensemble averaging, selecting dissipation law I,
and considering larger scales on which biharmonic friction is negligible yields

∂q1,k

∂t
= −Ak(q1,k − q∗1,k), (5.1a)

∂q2,k

∂t
= −Ak(q2,k − q∗2,k) + ν0k

2ψ2,k. (5.1b)

In statistical equilibrium, the temporal derivatives vanish, and mean circulation is
determined by the eddy relaxation coefficients Ak, the Rayleigh friction coefficient
ν0, and the maximum-entropy mean state q∗i . Using (2.2)–(2.3), we estimate q∗i from
the maximum-entropy mean streamfunctions of Salmon et al. (1976), which can be
written

ψ∗1,k =
F1hk

Λ
, ψ∗2,k =

(k2 + F1 + µ1)hk
Λ

, (5.2)

where

Λ ≡ k2(k2 + F1 + F2) + µ1(k
2 + F2) + µ2(k

2 + F1) + µ1µ2. (5.3)

Here, µi ≡ α/βi, i = 1, 2, where α and βi are Lagrange multipliers determined by total
energy and potential enstrophy in the two layers.
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damping to eddy relaxation timescales, from equations (A 3)–(A 4). Solid curves denote lower layer;
dashed curves denote upper layer. In each panel k = k0 and µ1 = µ2 = 16k2

0 .

Substituting (5.2)–(5.3) into (5.1) yields expressions for perturbed ψi,k and mean

interface displacement ∆k, as detailed in the Appendix. The results depend mainly on
deformation radius LD = (H1H2/H

2
0F)1/2 and the ratio ν0/Ak. Figure 10 shows ψ1,k

and ψ2,k as functions of LD for k = k0 and selected values of ν0/Ak, for particular
choices of µ1 and µ2. For ν0/Ak = 0, we recover the inviscid results (5.2)–(5.3), which
feature substantial attenuation of ψ1,k when LD & k−1

0 . For ν0/Ak = 0.1, the results are
much the same. However, for ν0/Ak & 1, pronounced changes occur. In the bottom
layer, ψ2,k suffers significant damping, as one might expect. In the top layer, ψ1,k

reverses sign when LD becomes an appreciable fraction of k−1
0 . For ν0/Ak � 1, the

reversed upper-layer mean flow can exceed the lower-layer mean flow in strength.
From (A 3)–(A 5), one can show that for arbitrary fixed k, Fi and µi > 0, ψi,k and

∆k monotonically decrease with increasing ν0/Ak, with bounds

ν0/Ak = 0 ν0/Ak →∞

ψ∗1,k > ψ1,k >
−µ1

k2 + F1

ψ∗1,k, (5.4a)

ψ∗2,k > ψ2,k > 0, (5.4b)

∆
∗
k > ∆k >

µ1F1

(k2 + µ1)(k2 + F1)
∆
∗
k. (5.4c)

We interpret these results as follows. As ν0 increases, ψ2,k becomes increasingly
damped. This reduces |ψ2,k − ψ1,k|, and hence the height of interfacial domes. In the
upper layer, q1,k experiences no appreciable damping on the scales considered, so
that q1,k = q∗1,k from (5.1a). But q1,k is the sum of mean relative vorticity (negative
for positive ψ1,k) and planetary vorticity arising from deformation of the interface.
The latter is smaller than at maximum entropy due to the reduced interfacial dome
height. Relative vorticity −k2ψ1,k therefore must be larger than at maximum entropy,



Eddy fluxes and topography in stratified quasi-geostrophic models 71

implying reduced ψ1,k. If Rayleigh friction reduces the interfacial displacement more

than (k2H0/f0)ψ
∗
1,k, the sign of ψ1,k reverses.

The numerical results of § 3–§ 4 exhibit trends similar to those just described: ψ1

decreases as LD increases, and changes sign if ν0 is sufficiently large. Also, ∆ always
is domed over topographic elevations. To enable direct comparisons between the
numerical solutions and solutions to (5.1), we estimate the restoring coefficients A,
ignoring dependence on wavenumber, as follows. First, the model runs are resumed
with forcing and dissipation absent. (Residual numerical dissipation is insignificant
on timescales of interest.) The streamfunction–topography correlations Cψh,i, as well
as other model parameters, then relax toward maximum-entropy values. Following
least-squares fits of Cψh,i(t) to exponential decay laws, approximate values for A are
inferred from means of the best-fit exponential decay rates in the two layers. Values
of ν0/A for each run are indicated in tables 2–4.

The reason for upper-layer mean flow reversal in the smooth-ridge run R2nr despite
relatively small ν0 = 0.5 × 107 s−1 now becomes clear. In this run, the absence of
topographic roughness leads to an order-of-magnitude reduction in eddy relaxation
rate A. (Such an effect was noted also in barotropic simulations by Cummins &
Holloway 1994.) This results in relatively large ν0/A = 6.7, promoting flow reversal
as discussed above.

Figure 11 provides a comparison of predicted vs. numerical-model values for the
Fourier component of the mean streamfunction corresponding to the ridge. The
labelled plus signs, denoting the forced-dissipative runs with ridge topography and
dissipation law I, are connected by solid lines to asterisks denoting the corresponding
(equilibrated) inviscid runs. To obtain predicted ψ, equations (5.2)–(5.3) and (A 2)–
(A 3) were evaluated using values for µ1 and µ2 deduced from the inviscid runs.
Because the Fourier transforms of (5.2), (5.3) are equivalent to µiψ

∗
i = q∗i , i = 1, 2

(Merryfield 1998), one can find µi from the slopes defined by scatter plots of ψ∗i vs.
q∗i in instances where (5.2)–(5.3) hold. These relations are formally valid only for
random initial conditions and topography. However, we found that for bumpy ridge
topography, the ψ∗i –q∗i relations are very nearly linear, even though the topography
contains a significant non-random feature. In such instances, the µi could be estimated
from linear least-squares fits. In the case of the smooth ridge (run R2nr), the ψ∗i − q∗i
relation was significantly nonlinear. (This may in part be due to the very slow
equilibration of the inviscid run.) In this instance, approximate values for µi were
determined from µi ≈ ∆q∗i /∆ψ∗i , where ∆q∗i and ∆ψ∗i denote differences between
extrema of q∗i and ψ∗i . We did not attempt such determinations for the seamount
runs, for which the ψ∗i − q∗i relations are markedly nonlinear. In Figure 11, the ability
of (A 3)–(A 4) to represent numerical model behaviour is indicated by proximity
of the symbols to unit slope (dashed line). The predictions appear reasonable with
respect to the magnitude of inviscid equilibrium mean flows, and to their modification
by Rayleigh friction. In particular, (A 3) provides reasonably accurate indications of
when the upper-layer mean flow reverses sense.

Equation (A 3) also predicts that numerical solutions which exhibit negative ψ1–h
correlation on large scales should exhibit positive ψ1–h correlation on sufficiently
small scales. Such a reversal is seen in all runs for which large-scale ψ1–h correlation
is negative, occurring between k = 2k0 and 6k0. Figure 12 shows ψi,k for unit hk as
functions of k, averaged in bins of unit k, for run R4. Lower-layer ψ2,k (•) is positive
for all k, whereas ψ1,k (◦) reverses from negative to positive at k ≈ 6k0. The thin

curves plot (A 3) and (A 4), for constant Ak = 1.25 × 10−7 s−1 and with µ1 = 17k2
0,
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Figure 11. Comparison of predicted mean streamfunctions ψi,k corresponding to ridge with those
found numerically, for ridge runs with dissipation law I. Plus signs denoting forced-dissipative runs
are joined by solid lines to asterisks denoting inviscid counterparts. Dashed lines of unit slope
indicate perfect prediction. (a) Upper layer, (b) lower layer.

µ2 = 4.8k2
0, values characterizing the inviscid continuation of R4. For the thick curves,

Ak = 6.25 × 10−9(k/k0)
2 s−1. The superiority of the latter fit suggests that Ak, and

hence the rate at which eddies drive the flow toward higher entropy, increases toward
smaller scales. The extent to which this tendency may depend upon statistics of the
topography and flow remains to be explored.

5.2. Eddy fluxes of potential vorticity

In § 3.2, largest-scale eddy fluxes of potential vorticity in the lower layer were found
to be downgradient. Those in the upper layer were nearly vanishing, downgradient,
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Figure 12. Mean streamfunctions ψi,k (for unit hk), as functions of k, for run R4 having
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and dissipation are turned off. The thick curves are similar, but with Ak = 3.12 × 10−9(k/k0)2 s−1.
Solid curves denote lower layer; dashed curves denote upper layer.

or countergradient for dissipation laws I, II and III. Here we interpret this behaviour
in terms of the tendency for eddies to drive the flow toward higher entropy.

In the absence of mean forcing, mean eddy fluxes of potential vorticity must balance
dissipation in statistical equilibrium. For dissipation law I, upper-layer dissipation on
the largest scales is extremely small, and so the opposing eddy fluxes nearly vanish.
For law II, upper-layer dissipation acts upon relative vorticity, which is negative over
topographic elevations. This tends to build up the positive potential vorticity anomaly.
The opposing eddy fluxes must reduce positive q1, and therefore are downgradient.
For law III, dissipation reduces the positive anomalies of q1 found over topographic
elevations. The opposing eddy fluxes build up positive anomalies of q1, and therefore
are countergradient.

In the lower layer, dissipation acts upon relative vorticity, which again is negative
over topographic elevations. This tends to increase the positive potential vorticity q2.
The opposing eddy fluxes tend to reduce q2, and therefore are downgradient.

In each instance, the eddy fluxes tend to relax qi not toward homogeneity, but
toward the maximum-entropy values q∗i which occur when forcing and dissipation are
absent. The eddy fluxes thus are consistently downgradient with respect to qi − q∗i .

5.3. Eddy fluxes of layer thickness

In § 3.3 and § 4.2, fluxes of layer thickness anomaly Θi on the largest scales were found
to be countergradient in both layers. This behaviour can be understood as follows. For
dissipation law I, dissipation on large scales acts almost entirely in the lower layer.
Because dissipation damps large-scale ψ2 but not ψ1, the interfacial deformation,
proportional to |ψ2 − ψ1|, is reduced. The opposing influence of eddies builds up

interfacial deformation, driving Θi away from Θi = 0 and toward Θi = Θ
∗
i . Eddy
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fluxes thus are countergradient with respect to Θi, but downgradient with respect to

Θi −Θ∗i .

6. Implications for eddy parameterizations
In § 3–§ 5 we showed that eddy fluxes of layer thickness, potential vorticity and

momentum tend to drive the mean states of stratified quasi-geostrophic models toward
higher entropy. In this section, we consider how these results bear upon various eddy
parameterizations.

6.1. Parameterizations of eddy thickness flux

One class of eddy parameterizations assumes that available potential energy of
the large-scale flow is released by eddy-generating baroclinic instabilities, leading
to flattening of isopycnal surfaces. Such parameterizations have been formulated
for level (Gent & McWilliams 1990; Gent et al. 1995; Visbeck, et al. 1997) and
layer (McCreary & Kundu 1988; Cherniawsky & Holloway 1991; Bleck et al. 1992)
models, as discussed further by Holloway (1997). The parameterization of Gent
& McWilliams (1990; see also Gent et al. 1995), for example, relaxes isopycnals
by imposing nearly-Fickian down-gradient diffusion of layer thickness. The Gent
& McWilliams parameterization leads to apparent improvements ocean circulation
models (e.g. Danabasoglu & McWilliams 1995).

The supposition that eddies lead strictly to down-gradient thickness diffusion
conflicts with the numerical results of § 3–§ 4. Especially, we observe upper-layer
thickness fluxes which build and sustain isolated thickness extrema, contrary to down-
gradient diffusion. When topography is present, eddies tend to drive mean isopycnals
toward shapes which reflect bathymetry, affecting thickness anomalies throughout the
water column.

To account for the tendency for eddies to drive the system toward higher entropy,
thickness diffusion parameterizations should diffuse thickness anomaly not toward
Θ = 0, but toward a higher-entropy, topographically-correlated Θ∗, whose specifi-
cation is discussed in § 6.4. Eddy thickness flux is then proportional to ∇(Θ − Θ∗).
One consequence of this approach is that when eddy thickness fluxes at a particular
location are persistently countergradient, as in the examples of § 3–§ 4, eddy tracer
fluxes also are countergradient. Such a tendency has been observed at Fieberling
Guyot, where radial eddy heat transport lowers temperature in the overlying cold
dome (Brink 1995).

6.2. Parameterizations of eddy potential vorticity flux

Another class of eddy parameterizations assumes down-gradient lateral diffusion of
potential vorticity (e.g. Marshall 1981; Rhines & Young 1982; Thompson 1995;
Treguier, Held & Larichev 1997). Such eddy fluxes are equivalent to vertical transport
of momentum by interfacial form drag (Greatbach & Lamb 1990). By considerations
similar to those in § 6.1, diffusion of q down gradients of ∇(q − q∗) may represent
eddy potential vorticity fluxes more accurately than diffusion down gradients of q.

6.3. Parameterizations of eddy momentum flux

A consequence of eddies driving flows toward higher entropy is the generation of topo-
graphically-correlated currents which are anticyclonic over bumps (Haidvogel & Brink
1986; Holloway 1987; Treguier 1989; Merryfield & Holloway 1997). To parameterize
this effect, Holloway (1992) suggested replacing the usual eddy viscosity, which



Eddy fluxes and topography in stratified quasi-geostrophic models 75

relaxes horizontal velocity u toward rest, by a term which relaxes u towards a higher-
entropy mean flow u∗. Specification of u∗ was drawn from the Salmon et al. (1976)
description of the maximum-entropy states of unstratified quasi-geostrophic models.
This particularly simple form for u∗ has been employed in several ocean circulation
studies, with apparent improvements in model fidelity (Alvarez, et al. 1994; Eby &
Holloway 1994; Fyfe & Marinone 1995; Sou, Holloway & Eby 1995; Pal & Holloway
1996; Nazarenko et al. 1997). An alternative specification for u∗ which accounts for
stratification is discussed below.

6.4. Specification of Θ∗, q∗, u∗

Sections 6.1–6.3 discussed parameterizations of the tendency for eddies to drive
the flow toward higher entropy. Here we consider how to specify the high-entropy
thicknessΘ∗, potential vorticity q∗, and horizontal velocity u∗, drawing upon analytical
results for continuously stratified quasi-geostrophic models (Merryfield 1998). For
especially simple illustration, we consider the case of uniform stratification.

For uniform Brunt–Väisälä frequency N, the Fourier components of the maximum-
entropy mean streamfunction are

ψ∗k(z) =
hk

µ+ k2
KH0

coshKz

sinhKH0

, (6.1)

where

K ≡ N

f0

(µ+ k2)1/2 =
LD

H0

(µ+ k2)1/2. (6.2)

The function µ(z), determined by total energy and potential enstrophy as a function
of depth, is here assumed uniform.

The maximum-entropy mean isopycnal deformations, given by

∆
∗
k =

f0

N2

dψ∗k
dz

=
hk

f0

H0

sinhKz

sinhKH0

, (6.3)

describe domes over elevated topography. The corresponding thickness anomalies are

Θ
∗
k = − d

dz
∆
∗
k = − 1

f0

[
k2 + µ

]
ψ∗k

= −hk
f0

KH0

coshKz

sinhKH0

, (6.4)

so that thickness anomalies over elevated topography are negative.
The equilibrium mean potential vorticity is related to mean streamfunction by

q∗k(z) = µψ∗k(z), (6.5)

and the horizontal velocity u∗ = (u∗, v∗) can be determined from

u∗ = −∂ψ
∗

∂y
, v∗ =

∂ψ∗

∂x
. (6.6)

These solutions depend strongly upon stratification. When KH0 � 1, effects of
stratification are weak, and the mean streamfunction (6.1)–(6.2) becomes nearly

barotropic. Isopycnal deformation increases linearly with depth, and Θ
∗
(z) becomes

depth-independent. Stratification effects become important when KH0 & 1, which
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Figure 13. Mean isopycnals for maximum-entropy flow over a sinusoidal ridge, for uniform
continuous stratification. (a) Weak stratification (KH0 = 0.5). (b) Strong stratification (KH0 = 5).

occurs (i) on spatial scales smaller than LD , or (ii) on all spatial scales, provided that
µ−1/2 & LD . The mean flow then becomes increasingly bottom-trapped, with scale
height K−1. Isopycnal deformations and thickness anomalies are confined within a
distance K−1 of the bottom. Figure 13 shows mean isopycnals for maximum-entropy
flow above a sinusoidal ridge, for KH0 = 0.5 and KH0 = 5.

Application to realistic ocean models having lateral boundaries is greatly simplified
if model resolution is coarser than the lengthscale µ−1/2. Then q∗, Θ∗ and u∗ can be
determined from ψ∗i through an ordinary differential equation

d

dz

[
f2

0

N2(z)

dψ∗

dz

]
− µψ∗(z) = 0, (6.7)

solved at each horizontal grid location (Merryfield 1998). The magnitude of µ−1/2

has been related to eddy lengthscales (Holloway 1992), although a more confident
prescription for µ would be desirable. As a further refinement one could consider the
z-dependence of µ; additional work is needed to establish such a choice.

7. Discussion
Some of the properties described above have been observed in other contexts, most

notably in studies of tidal rectification by banks and seamounts. Anticyclonic mean
flows above topographic elevations have been seen in the laboratory experiments
of Zhang & Boyer (1993) and Codiga (1993) and the primitive-equation numerical
models of Chen & Beardsley (1995) and Beckmann & Haidvogel (1997). In the latter
model the anticyclonic vortex is capped by a reverse (cyclonic) circulation which
qualitatively resembles the reversed upper-layer mean flows described here. The tidal
rectification models exhibit isopycnal doming over summits.

Care must be taken in making such comparisons because of differences between
primitive-equation models and a quasi-geostrophic model. For example, the primitive
equation models support mixing in the benthic boundary layer, which deflects iso-
pycnals bottomward. The resulting radial pressure gradient drives an upslope cyclonic
flow in the bottom boundary layer and a downslope, anticyclonic flow which domi-
nates azimuthal transport above (Cummins & Foreman 1998 and references therein).
This tendency can contribute to mean-flow generation in tidal rectification models.

Other phenomena bearing on vorticity production over topography include Taylor
caps (Chapman & Haidvogel 1992), trapped waves (Haidvogel et al. 1993), and
vortex shedding (Smith 1992; Schär & Smith 1993). As well, baroclinic instability



Eddy fluxes and topography in stratified quasi-geostrophic models 77

generates eddies when the bottom is flat. Such processes provide pathways, generating
fluctuations and yielding higher entropy. Statistical-mechanics-based descriptions are
essentially amechanistic in that details of processes effecting higher entropy are not
considered, much as collisions in a gas effect relaxation toward equilibrium without
requiring detailed consideration of the collisions themselves.

The principles considered here can be invoked even when topography plays no role.
For example, in the case of wind-driven circulation in a flat-bottomed channel (e.g.
Visbeck et al. 1997), our formulation would treat eddies as relaxing mean potential
vorticity toward q∗ = 0. An alternative formulation described by Kazantsev, Sommeria
& Verron (1998) uses statistical mechanics to parameterize eddies in a barotropic,
flat-bottomed basin. Their scheme stipulates that fluxes due to unresolved motions
act to maximize the rate of entropy production, as deduced from the statistical theory
of Robert & Sommeria (1991, 1992). Such a procedure can also be applied with
arbitrary (non-random) topography.

8. Conclusions
We have sought to characterize eddy transports when topography and stratifica-

tion are important. Eddy effects were illustrated numerically in two-layer models of
randomly forced flow over ridge and seamount topographies in which the dissipation
law, depth dependence of random forcing, and degree of stratification were varied.
All numerical solutions exhibited isopycnal doming and anticyclonic mean flow over
topographic elevations in the lower layer. The sense of upper-layer mean flow can
reverse when lower-layer Rayleigh friction is sufficiently large. Radial eddy fluxes of
layer thickness anomaly are countergradient. Fluxes of potential vorticity anomaly
are downgradient in the lower layer, and nearly vanishing, downgradient, or counter-
gradient in the upper layer, depending upon the choice of upper-layer dissipation law.
These tendencies are consistent with eddies driving the system toward higher-entropy
states, rather than toward rest. A simple description in which dissipation balances the
entropy generation tendency of eddies yields predictions consistent with the numerical
results.

We suggest that eddy parameterizations can be improved by accounting for such
behaviour. For example, parameterizations for eddy fluxes of potential vorticity and
layer thickness should diffuse these quantities not down gradients of q and Θ, but
down gradients of q − q∗ and Θ − Θ∗, where q∗ and Θ∗ are high-entropy states
which can be estimated from the maximum-entropy equilibria of quasi-geostrophic
models. We also suggest that a parameterization for eddy fluxes of momentum could
be improved by choosing bottom-intensified u∗, rather than the barotropic form used
previously.

This work was supported by the Office of Naval Research (N00014-96-I-0518),
and by a Fellowship to W.J.M. from the NOAA Postdoctoral Program in Climate
and Global Change. The paper benefited from the thoughtful comments of three
anonymous referees.

Appendix. Equilibrium solutions of (5.1)
Equilibrium solutions of equations (5.1) for ψi,k and ∆k are obtained by substituting

for qi,k from (2.2)–(2.3), and specifying ψ∗i,k from (5.2)–(5.3), yielding

−(k2 + F1)ψ1,k + F1ψ2,k = µ1ψ
∗
1,k, (A 1)
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F2ψ1,k −
[
(k2 + F2) +

ν0

A
k2
]
ψ2,k = µ2ψ

∗
2,k − hk. (A 2)

The solution can be written

ψ1,k =

1− ν0

A

µ1

k2 + F1 + F2

1 +
ν0

A

k2 + F1

k2 + F1 + F2

ψ∗1,k, (A 3)

ψ2,k =
1

1 +
ν0

A

k2 + F1

k2 + F1 + F2

ψ∗2,k. (A 4)

From these results, together with (4.4),

∆k =

1 +
ν0

A

µ1F1

(k2 + F1 + F2)(k2 + µ1)

1 +
ν0

A

k2 + F1

k2 + F1 + F2

∆
∗
k. (A 5)
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